Abstract:Although text-to-audio generation has made remarkable progress in realism and diversity, the development of evaluation metrics has not kept pace. Widely-adopted approaches, typically based on embedding similarity like CLAPScore, effectively measure general relevance but remain limited in fine-grained semantic alignment and compositional reasoning. To address this, we introduce AQAScore, a backbone-agnostic evaluation framework that leverages the reasoning capabilities of audio-aware large language models (ALLMs). AQAScore reformulates assessment as a probabilistic semantic verification task; rather than relying on open-ended text generation, it estimates alignment by computing the exact log-probability of a "Yes" answer to targeted semantic queries. We evaluate AQAScore across multiple benchmarks, including human-rated relevance, pairwise comparison, and compositional reasoning tasks. Experimental results show that AQAScore consistently achieves higher correlation with human judgments than similarity-based metrics and generative prompting baselines, showing its effectiveness in capturing subtle semantic inconsistencies and scaling with the capability of underlying ALLMs.
Abstract:Recent advances in audio-aware large language models have shown strong performance on audio question answering. However, existing benchmarks mainly cover answerable questions and overlook the challenge of unanswerable ones, where no reliable answer can be inferred from the audio. Such cases are common in real-world settings, where questions may be misleading, ill-posed, or incompatible with the information. To address this gap, we present AQUA-Bench, a benchmark for Audio Question Unanswerability Assessment. It systematically evaluates three scenarios: Absent Answer Detection (the correct option is missing), Incompatible Answer Set Detection (choices are categorically mismatched with the question), and Incompatible Audio Question Detection (the question is irrelevant or lacks sufficient grounding in the audio). By assessing these cases, AQUA-Bench offers a rigorous measure of model reliability and promotes the development of audio-language systems that are more robust and trustworthy. Our experiments suggest that while models excel on standard answerable tasks, they often face notable challenges with unanswerable ones, pointing to a blind spot in current audio-language understanding.
Abstract:Generative spoken language models pretrained on large-scale raw audio can continue a speech prompt with appropriate content while preserving attributes like speaker and emotion, serving as foundation models for spoken dialogue. In prior literature, these models are often evaluated using ``global token perplexity'', which directly applies the text perplexity formulation to speech tokens. However, this practice overlooks fundamental differences between speech and text modalities, possibly leading to an underestimation of the speech characteristics. In this work, we propose a variety of likelihood- and generative-based evaluation methods that serve in place of naive global token perplexity. We demonstrate that the proposed evaluations more faithfully reflect perceived generation quality, as evidenced by stronger correlations with human-rated mean opinion scores (MOS). When assessed under the new metrics, the relative performance landscape of spoken language models is reshaped, revealing a significantly reduced gap between the best-performing model and the human topline. Together, these results suggest that appropriate evaluation is critical for accurately assessing progress in spoken language modeling.
Abstract:In this paper, we show that when spoken language models (SLMs) are instructed to speak in a specific speaking style at the beginning of a multi-turn conversation, they cannot maintain the required speaking styles after several turns of interaction; we refer to this as the style amnesia of SLMs. We focus on paralinguistic speaking styles, including emotion, accent, volume, and speaking speed. We evaluate three proprietary and two open-source SLMs, demonstrating that none of these models can maintain a consistent speaking style when instructed to do so. We further show that when SLMs are asked to recall the style instruction in later turns, they can recall the style instruction, but they fail to express it throughout the conversation. We also show that explicitly asking the model to recall the style instruction can partially mitigate style amnesia. In addition, we examine various prompting strategies and find that SLMs struggle to follow the required style when the instruction is placed in system messages rather than user messages, which contradicts the intended function of system prompts.
Abstract:Equipping large language models (LLMs) with search engines via reinforcement learning (RL) has emerged as an effective approach for building search agents. However, overreliance on search introduces unnecessary cost and risks exposure to noisy or malicious content, while relying solely on parametric knowledge risks hallucination. The central challenge is to develop agents that adaptively balance parametric knowledge with external search, invoking search only when necessary. Prior work mitigates search overuse by shaping rewards around the number of tool calls. However, these penalties require substantial reward engineering, provide ambiguous credit assignment, and can be exploited by agents that superficially reduce calls. Moreover, evaluating performance solely through call counts conflates necessary and unnecessary search, obscuring the measurement of true adaptive behavior. To address these limitations, we first quantify the self-knowledge awareness of existing search agents via an F1-based decision metric, revealing that methods such as Search-R1 often overlook readily available parametric knowledge. Motivated by these findings, we propose AdaSearch, a simple two-stage, outcome-driven RL framework that disentangles problem solving from the decision of whether to invoke search, and makes this decision process explicit and interpretable. This transparency is crucial for high-stakes domains such as finance and medical question answering, yet is largely neglected by prior approaches. Experiments across multiple model families and sizes demonstrate that AdaSearch substantially improves knowledge-boundary awareness, reduces unnecessary search calls, preserves strong task performance, and offers more transparent, interpretable decision behaviors.
Abstract:Speech-to-Speech (S2S) models have shown promising dialogue capabilities, but their ability to handle paralinguistic cues--such as emotion, tone, and speaker attributes--and to respond appropriately in both content and style remains underexplored. Progress is further hindered by the scarcity of high-quality and expressive demonstrations. To address this, we introduce a novel reinforcement learning (RL) framework for paralinguistic-aware S2S, ParaS2S, which evaluates and optimizes both content and speaking style directly at the waveform level. We first construct ParaS2SBench, a benchmark comprehensively evaluates S2S models' output for content and style appropriateness from diverse and challenging input queries. It scores the fitness of input-output pairs and aligns well with human judgments, serving as an automatic judge for model outputs. With this scalable scoring feedback, we enable the model to explore and learn from diverse unlabeled speech via Group Relative Policy Optimization (GRPO). Experiments show that existing S2S models fail to respond appropriately to paralinguistic attributes, performing no better than pipeline-based baselines. Our RL approach achieves a 11% relative improvement in response content and style's appropriateness on ParaS2SBench over supervised fine-tuning (SFT), surpassing all prior models while requiring substantially fewer warm-up annotations than pure SFT.
Abstract:Robust ASR under domain shift is crucial because real-world systems encounter unseen accents and domains with limited labeled data. Although pseudo-labeling offers a practical workaround, it often introduces systematic, accent-specific errors that filtering fails to fix. We ask: How can we correct these recurring biases without target ground truth? We propose a simple parameter-space correction: in a source domain containing both real and pseudo-labeled data, two ASR models are fine-tuned from the same initialization, one on ground-truth labels and the other on pseudo-labels, and their weight difference forms a correction vector that captures pseudo-label biases. When applied to a pseudo-labeled target model, this vector enhances recognition, achieving up to a 35% relative Word Error Rate (WER) reduction on AfriSpeech-200 across ten African accents with the Whisper tiny model.
Abstract:While full-duplex speech agents enable natural, low-latency interaction by speaking and listening simultaneously, their consistency and task performance in multi-turn settings remain underexplored. We introduce Full-Duplex-Bench-v2 (FDB-v2), a streaming framework that integrates with an automated examiner that enforces staged goals under two pacing setups (Fast vs. Slow). FDB-v2 covers four task families: daily, correction, entity tracking, and safety. We report turn-taking fluency, multi-turn instruction following, and task-specific competence. The framework is extensible, supporting both commercial APIs and open source models. When we test full-duplex systems with FDB-v2, they often get confused when people talk at the same time, struggle to handle corrections smoothly, and sometimes lose track of who or what is being talked about. Through an open-sourced, standardized streaming protocol and a task set, FDB-v2 makes it easy to extend to new task families, allowing the community to tailor and accelerate evaluation of multi-turn full-duplex systems.




Abstract:Current large language models (LLMs) and spoken language models (SLMs) begin thinking and taking actions only after the user has finished their turn. This prevents the model from interacting during the user's turn and can lead to high response latency while it waits to think. Consequently, thinking after receiving the full input is not suitable for speech-to-speech interaction, where real-time, low-latency exchange is important. We address this by noting that humans naturally "think while listening." In this paper, we propose SHANKS, a general inference framework that enables SLMs to generate unspoken chain-of-thought reasoning while listening to the user input. SHANKS streams the input speech in fixed-duration chunks and, as soon as a chunk is received, generates unspoken reasoning based on all previous speech and reasoning, while the user continues speaking. SHANKS uses this unspoken reasoning to decide whether to interrupt the user and to make tool calls to complete the task. We demonstrate that SHANKS enhances real-time user-SLM interaction in two scenarios: (1) when the user is presenting a step-by-step solution to a math problem, SHANKS can listen, reason, and interrupt when the user makes a mistake, achieving 37.1% higher interruption accuracy than a baseline that interrupts without thinking; and (2) in a tool-augmented dialogue, SHANKS can complete 56.9% of the tool calls before the user finishes their turn. Overall, SHANKS moves toward models that keep thinking throughout the conversation, not only after a turn ends. Animated illustrations of Shanks can be found at https://d223302.github.io/SHANKS/
Abstract:Large audio-language models (LALMs) are often used in tasks that involve reasoning over ordered options. An open question is whether their predictions are influenced by the order of answer choices, which would indicate a form of selection bias and undermine their reliability. In this paper, we identify and analyze this problem in LALMs. We demonstrate that no model is immune to this bias through extensive experiments on six LALMs across three widely used benchmarks and their spoken counterparts. Shuffling the order of answer options can cause performance fluctuations of up to 24% and even change model rankings, raising concerns about the reliability of current evaluation practices. We also study permutation-based strategies and show that they can mitigate bias in most cases. Our work represents the first systematic investigation of this issue in LALMs, and we hope it raises awareness and motivates further research in this direction.